Recognizing Panoramas

Kevin Luo
Stanford University
450 Serra Mall, Stanford, CA 94305

kluo8l28@stanford.edu

Abstract

This project concerns the topic of panorama stitching.
Given a set of overlapping photos, we want to stitch them
together into a panorama. I implemented the method de-
scribed by Brown and Lowe and tested my method on a set
of 46 unordered input images. My method correctly identi-
fies and outputs four panoramas.

1. Introduction

Sometimes, a single image alone cannot fully capture an
object of interest. For example, a tourist may have taken
multiple photos of a mountain range from the same loca-
tion, but none of these images alone can completely cover
the extent of the mountain range. Using panorama stitch-
ing, we can combine these overlapping photos into a sin-
gle panorama, enabling the tourist to picture the mountain
range all at once. There are many commercial applications
that provide panorama stitching capabilities. In fact, even
smart phones now have the capability to take panoramas
instead of ordinary photos. I implemented in MATLAB a
simplified version of the invariant feature based approach
described by Brown and Lowe [2| 3]

2.1. Review of previous work

Some methods for panorama stitching require users
to place the images in the approximate regions of the
panorama, and then they proceed to stitch together the im-
ages. Other approaches require a fixed ordering to the im-
ages. For example, the images might be from left to right
in the panorama, or vice versa. However, these methods do
not scale well since they require human input and are not
fully automated.

On the other hand, direct methods attempt to minimize
an error function of the intensity differences in the region of
overlap [5]. These methods are not robust to illumination
changes.

2.2. Description of method

My approach relies on Lowe’s Scale Invariant Feature
Transform (SIFT) [[7] to identify feature descriptors. The
keypoints associated with each feature descriptor have a
characteristic scale and orientation in addition to the fea-
ture location, hence SIFT is insensitive to zoom as well as
rotation in the input image. In addition, normalization of
the vector of gradients in each frame makes SIFT invariant
to affine changes in intensity.

My method is fully automated and does not make any as-
sumptions about the ordering of input images. It can handle
multiple panoramas simultaneously and can filter out noise
images that do not belong to any panorama. Consequently,
it can potentially accept any set of images as input, such as
the photos on a camera flash card.

3.1. Summary of the technical solution

Given a set of unordered images as input, we first ex-
tract SIFT features from all of the images. We find matches
between pairs of images and use RANSAC to detect and fil-
ter out outliers. Next, we verify the image matches using a
probabilistic model and find the connected components of
the image matches. For each connected component with at
least two images, we estimate the homographies from each
image to the center image. Then we perform bundle ad-
justment to minimize the sum of squared projection error
over all matches, using the homography estimates as ini-
tial values of the parameters. Finally, we apply multi-band
blending and render the panorama.

3.2. Technical details
Feature Matching

I downloaded the SIFT demo code by David Lowe [6].
For each image, Lowe’s function sift.m runs the ex-
ecutable siftWin32.exe to extract the SIFT features
from that image.

Then for each pair of images, I adapted the SIFT demo
code in the function getMatches . m to obtain the indices



(a) SIFT matches

(b) Images aligned according to homographies

(c) Rendered with multi-band blending

Figure 1. Memorial Church. There are 170 and 263 correct feature matches between the two pairs of images. Input image sizes are
644 x 428, 804 x 534, and 644 x 428 pixels®. Resulting panorama has size 2644 x 1135 pixels.

of the feature matches between each pair of images. Fig-
ure 1(a) shows two examples of the feature matches iden-
tified between pairs of images. The matches are plotted by
the functions plotMatches.mand appendImages.m,
both of which have been adapted from the SIFT demo code.

Image Matching

For each pair of images with feature matches, I ap-
plied the RANSAC algorithm in my implementation of
refineMatches.m from Problem 3 of PS3 to detect
and filter out outliers in each pair of matching images.
RANSAC separates the original feature matches into inliers,



which are geometrically consistent, and outliers, which oc-
cur inside the area of overlap but are inconsistent. Since
any two random images may potentially have some feature
matches, I used the same probabilistic model from the paper
by Brown and Lowe to verify correct image matches.

Let m be a binary variable denoting whether two images
match correctly or not. For each ¢ from 1 to the number
of feature matches ny, let f (*) be a binary variable denot-
ing whether the ith feature match is an inlier or an outlier.
Assuming that the f()’s are independent Bernoulli, the to-
tal number of inliers n; = Z?:fl f@ can be modeled by a
Binomial distribution

p(fYm ) |m = 1) = Binomial(ng;ng, p1)
p(f(linf)‘m = 0) = Binomial(n;;ny, po)

where p; is the probability that a feature match is an inlier
given a correct image match, and pg is the probability that
a feature match is an inlier given an incorrect image match.
Then the posterior probability that the two images match
correctly given the set of feature matches can be calculated
using Bayes’ Rule

p(f* ) lm = 1)p(m = 1)
p(fmn))
1

1 4 pU" ) Im=0)p(m=0)
p(fE ) [m=1)p(m=1)

p(m =1|f1)) =

An image match is accepted if p(m = 1|f")) > pin.
If we assume a uniform prior p(m = 1) = p(m = 0), then
this simplifies into a likelihood ratio test

Binomial(n;;nyg,p1) 1
i
—1

Pmin

Binomial(n;;ng, po)

I used the same parameter values p; = 0.7, po = 0.01, and
Pmin = 0.97 as in the paper by Brown and Lowe, which
results in accepting an image match as correct if and only if

n; > 5.9+ 0.22ny

This filters out cases with too few feature matches as well
as those with relatively many outliers. If the image match is
accepted, then the inlier feature matches are saved and the
outliers are disregarded. I implemented the image match
verification check in main.m.

The input images can be treated as vertices in an undi-
rected graph, and for each correct match between two im-
ages, there is an edge with a weight equal to the number of
feature matches. Then we can use depth-first search (DFS)
to identify the connected components of the graph. The set
of images in each connected component form a panorama.
Any noise images will fail to match other images and form

isolated components, which this method subsequently ig-
nores. I implemented the functionality of depth-first search
in the functions dfs.mand visit .m.

Finding the Center Image

In order to obtain a rough approximation of the homogra-
phies, we can find the maximum spanning tree " of the con-
nected component, which eliminates edges with low num-
ber of feature matches in favor of those with more matches.
I implemented a naive version of finding the maximum
spanning tree in the function getMST . m.

Then we can compute the pairwise projective homo-
graphies between pairs of matching images in 7. I im-
plemented this in getTform.m, which uses the MAT-
LAB function estimateGeometricTransform with
the “projective” option. Since we can view the resulting
panorama from any orientation, we can minimize the total
panorama area by using the orientation of an image that is
close to the center of the panorama to reduce the stretch of
images at the ends of the panorama when rendering in two-
dimensional Cartesian coordinates.

Given a potential center image c, we initialize its trans-
formation H, to the identity matrix. Then we perform DFS
on the maximum spanning tree 7' of the connected compo-
nent, starting from image c, to estimate the transformations
for the rest of the images. When we visit image ¢, we can
compute the transformation for image j for each edge (i, j)
in T where j has not yet been visited

where H; is the pairwise homography from image 4 to im-
age 7 and H; is the transformation corresponding to image
1. By propagating the pairwise homographies throughout 7',
we can generate estimates of the homographies H; = H;
from each image ¢ to image c. I implemented this in the
functions get Tforms.m and updateTforms .m.

Then we can use these homographies to estimate the
area of the resulting panorama, which is implemented in
the function getPanoramaSize .m. The center image is
chosen as the potential image that minimizes the panorama
area.

Bundle Adjustment

Given the estimated transformations from the previous
subsection as initial points, we can perform bundle adjust-
ment to refine the homographies from each image to the
center image by minimizing the error function, which is the
sum of the squared projection error across all matches.

Let u¥ denote the Euclidean coordinates of the kth fea-
ture in image 7. Given a correspondence u¥ « uﬁ between
images ¢ and j, the residual is

k

_ .k k
Ty = W — Pij



Figure 2. 46 unordered input images consisting of four panoramas and three noise images. Six images have been resized, and six others

have been rotated. Most of the images have size 644 x 428 pixels®.

where pfj is the projection (in Euclidean coordinates) of
point uﬁ from image j onto image ¢. In homogeneous coor-
dinates,

~k ~0

Py = Hiju;
where

H;j=H;.H.,=H,; H.; = H 'H,

is the homography from image j to image ¢. Then the error
function is the sum over all images of the squared projection

error
n
e=> > 2. llE

i=1 jEL(i) ke F(i.5)

where n is the number of images, Z(7) is the set of images
matching image 7, and F (i, 7) is the set of feature matches
between images ¢ and j. This is a non-linear least squares
problem that can be solved using the Levenberg-Marquardt
algorithm.

As a starting point, I used the estimated projective homo-
graphies H; = H_; from each image ¢ to the center image
¢, which have been computed in the previous subsection. I
rescaled each homography so that its last component is 1,
and then organized the remaining 8 elements of each ho-
mography into a vector of parameters Phi. I implemented
the above error function in projectionError.m with
Phi as one of the arguments, then called 1 sgnonlin with

the Levenberg-Marquardt option to optimize the error with
respect to Phi.

In the first round, I started with the two images with
the highest number of matches and called 1sgnonlin
to minimize the error. Then I added in another image
with the most matches to one of those two images, called
lsgnonlin, and repeated until all images in the compo-
nent had been added. I implemented selection of the order-
ing of the images in the functions getOrdering.m and
getEdges.m.

Multi-band Blending

For multi-band blending, I followed the general ap-
proach outlined in the Image Pyramids and Blending lec-
ture of the course Computational Photography at CMU [4]].
I used a weight function w(z, y) = w(z)w(y), where w(z)
and w(y) vary linearly from 1 at the center of the image
to O at the edges. This is implemented in my function
getWeight .m.

I applied the homographies H.; on both the images
and the weights to transform them onto the plane of the
panorama. Then for each transformed image I constructed
a Laplacian pyramid L; with two levels, corresponding to
low and high frequencies, as well as a two-level Gaussian
pyramid G; for each transformed weight. Next, I formed a
combined pyramid where each level is the weighted aver-
age of the images. Finally, I collapsed the two levels of the



(a) Output panorama 1: Mission Peak, Fremont, 18 images, 4090 x 733 pixels?.

(b) Output panorama 2: The Oval, 3 images, 2362 x 964 pixels.

(c) Output panorama 3: Fremont hills, 19 images, 3575 x 839 pixels>.

(d) Output panorama 4: Memorial Church, 3 images, 2644 x 1135 pixels®.

Figure 3. Panoramas produced from the 46 input images.



combined pyramid to obain the final blended image.

I found an example of multi-band blending two im-
ages in MATLAB online by Hao Jiang, Boston Col-
lege [1]. The weights are computed in my function
getWeight . m. For rendering the panorama, I adapted the
panoramic image stitching example from MathWorks [8] in
getPanorama.m.

The effects of applying multi-band blending are shown
in Figure 1. The panorama in Figure 1(b) is rendered with-
out any blending, and there are visible seams between the
individual images in the panorama. In Figure 1(c), the same
panorama has been rendered with multi-band blending, and
the seams are no longer visible.

4. Experiments

To acquire data for my experiment, I took overlapping
pictures at Lake Elizabeth in Fremont, the Stanford Inner
Quad Courtyard, and the Stanford Oval, using a Nikon D90
camera. Since my approach can handle the constituent pho-
tos of multiple panoramas simultaneously, I combined all of
my images into one set. I also included several noise images
taken by the same camera. Then I resized all images from
3216 x 2136 square pixels down to 644 x 428 square pixels
to make matching more manageable. I enlarged three im-
ages up to 804 x 534 square pixels and reduced three images
down to 483 x 321 square pixels, to simulate differences in
zoom. I also rotated two images by 90°, two by 180°, and
two by 270°, to simulate differences in rotation. Then I
scrambled the order of the images and placed them in the
same directory, data46. The images are shown in Figure
2 (plotting handled by my functions plot Images.m and
appendImages.m). There are 46 total images consisting
of four panoramas and three noise images. The dimensions
of the panoramas are 4090 x 733, 2362 x 964, 3575 x 839,
and 2644 x 1135 pixels?.

Then I ran my method on MATLAB on my personal lap-
top (2.4GHz Windows PC) with the Computer Vision, Im-
age Processing, and Optimization Toolboxes installed, us-
ing my function main with the directory name as input.
The algorithm completed after about 250 seconds, ignored
the noise images, and correctly identified the four panora-
mas, shown in Figure 3.

For the most part, the panoramas seem to be well-
aligned, although there are some misalignments in the
arches of the Memorial Church panorama in Figure 3(d).
Since the panoramas are rendered in two-dimensional
Cartesian coordinates, the images at the ends of the
panorama are stretched horizontally much more than the
ones in the center, especially in the Fremont hills panorama
in Figure 3(c).

5. Conclusions

As seen in the previous section, this fully-automated ap-
proach is robust to scale and orientation of the input im-
ages, as well as to noise images that are not part of any
panorama. However, since I rendered my panoramas in
Cartesian coordinates, this method cannot handle wide-
angle panoramas, since the images along the edge of the
panoramas get stretched more and more as the field of view
increases. Therefore, one future work could involve cylin-
drical or spherical mapping so that 180 degree panoramas
can be rendered on a plane.

In addition, my approach is rather slow and does not
scale well since it considers all pairwise matches between
images. In reality, each image only matches a small num-
ber of others, even if they are all in the same panorama.
Therefore, another future work could involve finding the k
nearest-neighbors for each feature and only considering the
top candidate matching images to each image, as opposed to
all of them. Implementing this would significantly improve
the efficiency of this approach.

The code for my project can be found online at
GitHub: https://github.com/kluo8128/
cs231_project. The directory datadé contains
the 46 input images. There is also a second data directory,
data8, which contains 8 images, 2 panoramas and 1 noise
image.

References

[1] Multi-band image blending in compact matlab codes — com-
puter vision notes, 2015. [Online; accessed 2-June-2016].

[2] M. Brown and D. Lowe. Recognising panoramas. In Proceed-
ings of the 9th International Conference on Computer Vision,
volume 2, pages 1218-1225, Nice, October 2003.

[3] M. Brown and D. G. Lowe. Automatic panoramic image
stitching using invariant features. International Journal of
Computer Vision, 74(1):59-73, 2007.

[4] A. Efros. Cmu 15-463: Computational photography, 2005.
[Online; accessed 2-June-2016].

[5] M. Irani and P. Anandan. Vision Algorithms: Theory
and Practice: International Workshop on Vision Algorithms
Corfu, Greece, September 21-22, 1999 Proceedings, chapter
About Direct Methods, pages 267-277. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2000.

[6] D.Lowe. Keypoint detector, 2005. [Online; accessed 2-June-
2016].

[7]1 D.G. Lowe. Object recognition from local scale-invariant fea-
tures. In Proceedings of the International Conference on Com-
puter Vision-Volume 2 - Volume 2, ICCV ’99, pages 1150—,
Washington, DC, USA, 1999. IEEE Computer Society.

[8] MathWorks. Feature based panoramic image stitching, 2016.
[Online; accessed 2-June-2016].


https://github.com/kluo8128/cs231_project
https://github.com/kluo8128/cs231_project

